Laboratoire Psychologie de la Perception Institut Neurosciences Cognition Université Paris Descartes Centre National de Recherche Scientifique
Home
Research
vision Vision
action Action
speech Speech
avoc AVoC
support support staff
People
Former Staff
Teaching
Publications
Ethics
Events
Practical

Calendar
Opportunities
Internships
Contracts
Platforms
Links

Baby Lab

Intranet
Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments?

Numerous studies have shown that many animal species can be trained to discriminate between stimuli differing in numerosity. However, in the absence of generalization tests with untrained numerosities, what decision criterion was used by subjects remains unclear: the subjects may succeed by selecting a specific number of items (a criterion over absolute numerosities), or by applying a more general relative numerosity rule, e.g. selecting the larger/smaller quantity of items. The latter case may require more powerful representations, supporting judgements of order (“more/less”) beyond simple “same/different” judgements, but a relative numerosity rule may also be more adaptive. In previous research, we showed that guppies (Poecilia reticulata) spontaneously prefer relative numerosity rules. To date it is unclear whether this preference is shared by other fish and, more broadly, other species. Here we compared the performance of angelfish (Pterophyllum scalare) with that of human adults (Homo sapiens) in a task in which subjects were initially trained to select arrays containing 10 dots (either in 5 vs. 10 or 10 vs. 20 comparisons). Subsequently they were tested with the previously trained numerosity and a novel numerosity (respectively, 20 or 5). In the absence of explicit instructions, both species spontaneously favored a relative rule, selecting the novel numerosity. These similarities demonstrate that, beyond shared representations for numerical quantities, vertebrate species may also share a system for taking decisions about quantities.