Laboratoire Psychologie de la Perception Institut Neurosciences Cognition Université Paris Descartes Centre National de Recherche Scientifique
Home
Research
vision Vision
action Action
speech Speech
avoc AVoC
support support staff
People
Former Staff
Teaching
Publications
Ethics
Events
Practical

Calendar
Opportunities
Internships
Contracts
Platforms
Links

Baby Lab

Intranet
Visual adaptation of the perception of causality.

We easily recover the causal properties of visual events, enabling us to understand and predict changes in the phys- ical world. We see a tennis racket hitting a ball and sense that it caused the ball to fly over the net; we may also have an eerie but equally compelling experience of causality if the streetlights turn on just as we slam our car’s door. Both perceptual [1] and cognitive [2] processes have been proposed to explain these spontaneous inferences, but without decisive evidence one way or the other, the question remains wide open [3–8]. Here, we address this long- standing debate using visual adaptation—a powerful tool to uncover neural populations that specialize in the analysis of specific visual features [9–12]. After prolonged viewing of causal collision events called ‘‘launches’’ [1], subsequently viewed events were judged more often as noncausal. These negative aftereffects of exposure to collisions are spatially localized in retinotopic coordinates, the reference frame shared by the retina and visual cortex. They are not ex- plained by adaptation to other stimulus features and reveal visual routines in retinotopic cortex that detect and adapt to cause and effect in simple collision stimuli.