Laboratoire Psychologie de la Perception Institut Neurosciences Cognition Université Paris Descartes Centre National de Recherche Scientifique
Home
Research
vision Vision
action Action
speech Speech
avoc AVoC
support support staff
People
Former Staff
Teaching
Publications
Ethics
Events
Practical

Calendar
Opportunities
Internships
Contracts
Platforms
Links

Baby Lab

Intranet
A unified comparison of stimulus-driven, endogenous mandatory and ‘free choice’ saccades

It has been claimed that saccades arising from the three saccade triggering modes—stimulus-driven, endogenous mandatory and ‘free choice’—are driven by distinct mechanisms. We tested this claim by instructing observers to saccade from a white or black fixation disc to a same polarity (white or black) disc flashed for 100 or 200ms presented either alone (Exo), or together with an opposite (Endo) or same (EndoFC) polarity disc (blocked and mixed sessions). Target(s) and distractor were presented at three inter-stimulus intervals (ISIs) relative to the fixation offset (ISI: -200, 0, +200ms) and were displayed at random locations within a 4°-to-6° eccentricity range. The statistical analysis showed a global saccade triggering mode effect on saccade reaction times (SRTs) with Endo and EndoFC SRTs longer by about 27 ms than Exo-triggered ones but no effect for the Endo-EndoFC comparison. SRTs depended on both ISI (the “gap-effect”), and target duration. Bimodal best fits of the SRT-distributions were found in 65% of cases with their count not different across the three triggering modes. Percentages of saccades in the ‘fast’ and ‘slow’ ranges of bimodal fits did not depend on the triggering modes either. Bimodality tests failed to assert a significant difference between these modes. An analysis of the timing of a putative inhibition by the distractor (Endo) or by the duplicated target (EndoFC) yielded no significant difference between Endo and EndoFC saccades but showed a significant shortening with ISI similar to the SRT shortening suggesting that the distractor-target mutual inhibition is itself inhibited by ‘fixation’ neurons. While other experimental paradigms may well sustain claims of distinct mechanisms subtending the three saccade triggering modes, as here defined reflexive and voluntary saccades appear to differ primarily in the effectiveness with which inhibitory processes slow down the initial fast rise of the saccade triggering signal.



URL