Laboratoire Psychologie de la Perception Institut Neurosciences Cognition Université Paris Descartes Centre National de Recherche Scientifique
Home
Research
vision Vision
action Action
speech Speech
avoc AVoC
support support staff
People
Former Staff
Teaching
Publications
Ethics
Events
Practical

Calendar
Opportunities
Internships
Contracts
Platforms
Links

Baby Lab

Intranet
Neural correlates of switching from auditory to speech perception

Many people exposed to sinewave analogues of speech first report hearing them as electronic glissando and, later, when they switch into a 'speech mode', hearing them as syllables. This perceptual switch modifies their discrimination abilities, enhancing perception of differences that cross phonemic boundaries while diminishing perception of differences within phonemic categories. Using high-density evoked potentials and fMRI in a discrimination paradigm, we studied the changes in brain activity that are related to this change in perception. With ERPs, we observed that phonemic coding is faster than acoustic coding: The electrophysiological mismatch response (MMR) occurred earlier for a phonemic change than for an equivalent acoustic change. The MMR topography was also more asymmetric for a phonemic change than for an acoustic change. In fMRI, activations were also significantly asymmetric, favoring the left hemisphere in both perception modes. Furthermore, switching to the speech mode significantly enhanced activation in the posterior parts of the left superior gyrus and sulcus relative to the non-speech mode. When responses to a change of stimulus were studied, a cluster of voxels in the supramarginal gyrus was activated significantly more by a phonemic change than by an acoustic change. These results demonstrate that phoneme perception in adults relies on a specific and highly efficient left-hemispheric network, which can be activated in top-down fashion when processing ambiguous speech/non-speech stimuli.



PDF Link



URL